Change background image

Григорий Перельман: Доказана Гипотеза Пуанкаре — одна из семи Задач Тысячелетия...

Тема в разделе "Экономика, финансы и бизнес", создана пользователем Patriot, 7 янв 2016.

  1. TopicStarter Overlay

    Patriot Оракул

    Немного озадачился этой теоремой......кстати интересно....

    Доказана Гипотеза Пуанкаре — одна из семи Задач Тысячелетия...
    Задачи Тысячелетия — Millennium Prize Problems — составляют семь математических проблем, охарактеризованных как «важные классические задачи, решение которых не найдено вот уже в течение многих десятков лет». За решение каждой из этих проблем институтом Клэя предложен приз в 1 000 000 долларов США.

    Семь Задач Тысячелетия:

    1. Равенство классов P и NP
    2. Гипотеза Ходжа
    3. Гипотеза Пуанкаре — доказана!
    4. Гипотеза Римана
    5. Теория Янга — Миллса
    6. Существование и гладкость решений уравнений Навье — Стокса
    7. Гипотеза Берча и Свиннертона-Дайера
    Обобщённая гипотеза Пуанкаре утверждает, что:
    Для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.
    Исходная гипотеза Пуанкаре является частным случаем обобщённой гипотезы при n = 3.

    Гипотеза сформулирована французским математиком Пуанкаре в 1904 году. Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре — «это центральная проблема математики и физики, попытка понять какой формы может быть Вселенная, к ней очень трудно подобраться».

    Многие талантливые и одаренные математики многие годы пытались доказать данную гипотезу, найти решение. Сделал это Григорий Перельман — разрешив теорему Пуанкаре, встал в один ряд с величайшими гениями прошлого и настоящего. И вот тогда все ахнули, как понимающие, так и непосвященные...

    В 2002 году: Григорий Перельман опубликовал свою первую статью по проблеме теоремы Пуанкаре, в правильности своих доказательств, наверняка, он сомневался и сам. Гении всегда сомневаются, посредственности — нет. И долгие, мучительные четыре года он ждал главного — признания правильности своих доказательств. Как видим, его коллеги- оппоненты не спешили. Вердикт подписали три ведущих математика мира — Тьян, Кляйнер и Лотт. Формулировка свидетельствует, что они не поступились ни каплей своей научной репутации. Смысл ее — «...несмотря на некоторые незначительные неточности и даже мелкие ошибки, доказательства Перельмана корректны...»
    И так, в 2006 году международное математическое сообщество признало — Гипотеза Пуанкаре — доказана!


    Чтобы увидеть ссылку зарегистрируйтесь ! или авторизуйтесь на Форуме !


    Медаль Филдса

    Григорию Перельману за решение гипотезы Пуанкаре была присуждена международная премия «Медаль Филдса», однако он отказался от неё.

    18 марта 2010 года Математический институт Клэя объявил о присуждении Григорию Перельману премии в размере 1 миллион долларов США за доказательство гипотезы Пуанкаре. Это стало первым в истории присуждением премии за решение одной из Проблем тысячелетия.

    Математик не приехал на церемонию врученияпремии института Клэя в Париж, и не сообщил, решил ли он ее принять. В символическом виде награда была отдана французскому математику российского происхождения Михаилу Громову и Франсуазе Пуанкаре — внучке создателя гипотезы. При этом организатор и учредитель премии, Джеймс Карлсон, сказал, что он готов ждать решения Перельмана «столько, сколько потребуется». 1 июля 2010 года математик окончательно отказался от премии в 1 миллион долларов и осенью Математический институт имени Клэя объявит о том, как именно они будут потрачены на благо математики.

    Мир ахнул снова — питерский Гений отказался от всех мирских почестей. В отличии от Григория Перельмана, многие бы от миллиона не отказались, но они и не решили теорему Пуанкаре. А он думал только о ней. Бог целует в темечко тех, кто думает о нем, а не о Мамоне.

    Кто с завистью, кто с недоумением пожимают плечами, обсуждая и осуждая, но не многие могут понять, что Григорий Перельман хочет быть просто Свободным Человеком, свободным и независимым в этом Мире и во всей Вселенной. Он отказался поклоняться и преклоняться их Золотому Тельцу — что раздражает правящую элиту больше всего. Его энергия и его сила гения останутся с ним, он будет свободен в выборе своего пути.
     
    Размышляющий нравится это.
  2.  

  3. TopicStarter Overlay

    Patriot Оракул

    Теорема Пуанкаре – математическая формула «Вселенной». Григорий Перельман. Часть 1 (из серии «Настоящий Человек в науке»)
    сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

    Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре— «это центральная проблема математики и физики, попытка понять какой формы может быть Вселенная, к ней очень трудно подобраться».

    Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки».

    Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).

    Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемоюформулу Вселенной, доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».

    В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу».

    «Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»

    В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык, это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений, а Перельман спустя 100 лет математически это доказал.

    [​IMG]

    Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» [3]. А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» тема «Эзоосмическая решётка»). [1]

    Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современникамипространстве, а Духовно в каком-то ином, где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью. И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..

    Исключительная важность гипотезы, выдвинутой около века назад математиком Пуанкаре, касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания. Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.

    Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».

    Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентныистине Души? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да ичеловеческого сообщества в целом (см. доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» [1] и в книге «АллатРа» [2] последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения, как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению, с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа» [2] и доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» [1]), в которые не способно проникнуть даже человеческое воображение (ум)?! Что такое миллион звёздного неба для времени?!».

    Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы [4]:

    - Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.

    - Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) – взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.

    - Трёхмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем – у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

    - Полното́рие (полното́рий) — геометрическое тело, гомеоморфное произведению двумерного диска и окружности D2 * S1. Неформально, полноторие — бублик, тогда как тор — только его поверхность (пустотелая камера колеса).

    - Односвязное. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

    - Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

     
  4. TopicStarter Overlay

    Patriot Оракул

    Теорема Пуанкаре. Конечная бесконечность Вселенной математически доказана. Часть 2
    Проблема, которую решил Перельман, состоит в требовании доказать гипотезу, выдвинутую в 1904 году великим французским математиком Анри Пуанкаре (1854-1912) и носящую его имя. О роли Пуанкаре в математике трудно сказать лучше, чем это сделано в энциклопедии: «Труды Пуанкаре в области математики, с одной стороны, завершают классическое направление, а с другой - открывают пути к развитию новой математики, где наряду с количественными соотношениями устанавливаются факты, имеющие качественный характер» [1]. Гипотеза Пуанкаре как раз и имеет качественный характер - как и вся та область математики (а именно топология), к которой она относится и в создании которой Пуанкаре принял решающее участие.

    Анри Пуанкаре сформулировал гипотезу, которая стала известна как гомологическая трёхмерная сфера Пуанкаре. Сферу, кстати, совсем недавно ученые приспособили в астрофизике - оказалось, что Вселенная вполне может оказаться гомологической 3-сферой Пуанкаре.

    Обычная сфера, которая есть поверхность обычного шара, двумерна (а сам шар - тот трёхмерен). Двумерная сфера состоит из всех точек трёхмерного пространства, равноудалённых от некоторой выделенной точки, называемой центром и сфере не принадлежащей. Трёхмерная сфера состоит из всех точек четырёхмерного пространства, равноудалённых от своего центра (сфере не принадлежащего). В отличие от двумерных сфер трёхмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трёхчлен. Не исключено, однако, что все мы как раз в трёхмерной сфере и находимся, то есть что наша Вселенная является трёхмерной сферой. [2]

    В этом состоит значение результата Перельмана для физики и астрономии. Термин «односвязное компактное трёхмерное многообразие без края» содержит указания на предполагаемые свойства нашей Вселенной. Термин «гомеоморфно» означает некую высокую степень сходства, в известном смысле неотличимость. Формулировка в целом означает, следовательно, что если наша Вселенная обладает всеми свойствами односвязного компактного трёхмерного многообразия без края, то она - в том же самом «известном смысле» - и есть трёхмерная сфера. [2]

    Стоит отметить, что мы описали лишь выводы официальной науки. Изучением многомерности Вселенной активно занимаются учёные сообщества АЛЛАТРА НАУКА. Очень детально этот вопрос описан в книге «АллатРа» [3], а также в докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» [4].

    Физика, как правило, пользуется уже разработанными заготовками, предоставляемыми ей математикой. Математика не претендует, разумеется, на то, чтобы установить какие бы то ни было геометрические свойства Вселенной. Но она позволяет осмыслить те свойства, которые открыты другими науками. Более того. Она позволяет сделать более понятными некоторые такие свойства, которые трудно себе вообразить, она объясняет, как такое может быть. К числу таких возможных (подчеркнём: всего лишь возможных!) свойств относятся конечность Вселенной и её неориентируемость. [2]

    Согласно знаниям, изложенными в книгах Анастасии Новых, в подтверждении выше описанного факта, приведём цитату: «Даже современному человеку с его довольно развитым мышлением тяжело объяснить действительный процесс сотворения Вселенной, даже такой факт, что такое «конечная бесконечность Вселенной». [5]

    В том числе о «конечности бесконечной Вселенной» более подробно указано в докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА»: «Вселенная существует, т.е. ограничена пределами эзоосмической решётки». [4]

    О таком свойстве, как «конечность бесконечной Вселенной» в своих трудах описал Успенский Владимир Андреевич — доктор физико-математических наук, профессор. Долгое время единственной мыслимой моделью геометрического строения Вселенной служило трёхмерное евклидово пространство, то есть то пространство, которое известно всем и каждому из средней школы. Это пространство бесконечно; казалось, что никакие другие представления и невозможны; помыслить о конечности Вселенной казалось безумием. Однако ныне представление о конечности Вселенной не менее законно, чем представление о её бесконечности. В частности, конечна трёхмерная сфера. От общения с физиками у меня осталось впечатление, что одни отвечают «скорее всего, Вселенная бесконечна», другие же - «скорее всего, Вселенная конечна». [2]

    В заключении приведём отрывок из книги Анастасии Новых «Сэнсэй-IV»: «Люди до сих пор не могут понять, как из ничего может появиться что-то. Это нарушает логику. Логика не способна воспринять нелогичность. Человек может воспринять что-то нелогичное, лишь поверив в него, как говорится, на слово. Но наука и вера у нас сегодня существуют практически отдельно друг от друга. Науке нужны факты, то, что можно пощупать, потрогать, увидеть или хотя бы теоретически доказать. Поэтому для нынешней науки не понятно, что значит «Вселенная зародилась из ничего» или что значит «конечность бесконечной Вселенной». Ведь по логике вещей раз что-то «конечно», значит за ним должно быть что-то, что определяет эту конечность: стенка, пустота или наличие ещё чего-нибудь, поскольку этот мир в их понимании подчинён материальным законам. Но мы ставим во главе материю, поскольку сам наш мозг материален, и по большей части мы мыслим, оцениваем происходящее категориями логики. Когда мы думаем, что за Вселенной нет ничего, это замыкает наше сознание на нелогичности этого восприятия. Хотя наш мир на самом деле — соединение духовного и материальногосуществует соответственно по законам этого слияния, а не просто законов материи, как полагают сейчас». [4]

     
  5. TopicStarter Overlay

    Patriot Оракул

    Потоки Риччи
    Односвязное 3-мерное многообразие наделяется геометрией, вводятся метрические элементы с расстоянием и углами. Легче понять это на одномерных многообразиях. Гладкая замкнутая кривая на эвклидовой плоскости наделяется в каждой точке касательным вектором единичной длины. При обходе кривой вектор поворачивается с определенной угловой скоростью, которая определяет кривизну. Где линия изогнута сильнее, кривизна больше. Кривизна положительна, если вектор скорости повернут в сторону внутренней части плоскости, которую делит наша линия, и отрицательна, если повернут вовне. В местах перегиба кривизна равна 0. Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Его направление внутрь при положительной кривизне и вовне - при отрицательной. Каждую точку заставляем двигаться в направлении и со скоростью, определяемыми соответствующим вектором. Замкнутая кривая, проведенная в любом месте плоскости, при такой эволюции превращается в окружность. Это справедливо для размерности 3, что и требовалось доказать.
    [​IMG]
     
  6. TopicStarter Overlay

    Patriot Оракул

    Неправда ли интересно?????
     

Поделиться этой страницей